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ABSTRACT

Acousto-ultrasonics (AU) is a nondestructive evaluation technique that was developed

for the purpose of testing various types of materials. AU is sensitive to different types of

damage that may occur in composites. A study done at NASA Lewis Research Center

with metal-matrix composites and AU shows that after some signal processing of the raw

AU signals, damage due to strain and stiffness degradation could be determined. This

paper uses the data obtained from the NASA Lewis Research Center study and applies to

it a combination of neural networks and genetic algorithms.

INTRODUCTION

Genetic algorithms are good at handling nonlinear and higher-dimensional problems

which are characteristic of the problem of training neural networks [1]. They are also not

as sensitive to local minima like gradient training algorithms such as backpropagation [2].

In addition, genetic algorithms use information from a population of neural networks

instead of from a single neural network. This allows the genetic algorithm to obtain a

global perspective of the solution space so as to avoid local minima to find the global

minimum. In this paper, we describe the application of genetic algorithms to the building

and training of neural networks to determine the mechanical properties of materials from

acousto-ultrasonic data. This combination of neural networks and genetic algorithms will

be called genetic gradient cascade-correlation.

Acousto-Ultrasonic Technique

A detailed description of the AU technique is described elsewhere [3, 4, 5, 6, 7]. The

work by Vary [5], the originator of the method, provides the best description. A typical

AU setup consists of two piezoelectric transducers, a sender and a receiver, which are

coupled to the surface of the specimen under test (Figure 1). The sending transducer

introduces ultrasonic pulses into the specimen which then propagate along the specimen

and are picked up by the receiving transducer. The propagation of the pulses through the

material is affected by various mechanical properties. It is this fact which allows us to

deduce these mechanical properties by studying the waveform measured by the receiving
transducer.
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Figure I. Acousto-ultrasonic data collection system.

In the data we use, the pulses were sent at a repetition rate of 500 Hz and the

separations of the transducers was 1.91 cm for all measurements. Six measurements were

taken: three with both transducers on the top of the specimen and three with both

transducers on the bottom of the specimen. The metal-matrix composites we evaluate are

SiC (SCS-6)-reinforced Ti- 15V-3Cr-3Sn-3AI ('l'i- 15-3) material containing eight layers of

fibers yielding a total thickness of 0.20 cm. Two types of specimens are used: a straight-

sided specimen 1.27cm wide and a tapered specimen. Two types of specimens, [0]8 and

[+-3012 S, are considered in our study.

Each AU signal measurement consists of 512 discrete time samples of the signal

received by the receiving transducer as shown in Figure 2. A fast Fourier transform (FFT)

is performed which yields 256 real and imaginary amplitudes at 256 frequencies plus a DC

component. The FFT is simplified to a power spectrum and then averaged over every

two samples yielding 128 frequencies. Of these 128 frequencies, we found that only 32,

Figure 3, contain pertinent information so these are used for training the neural network

[7].
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Figure 2 >, ty?ical AU signal collected on SiC/Ti-15-3 specimen.
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Figure 3. FFT of the signal shown in Figure 2.

BACKGROUND

Neural Networks

Neural networks are composed of fundamental units known as neurons or nodes.

These neurons are like their biological counterparts in that they are connected to either

sensory inputs or directly to other neurons by synapses which are weighted [2]. When the

appropriate pattern of inputs are applied to the neuron, it will fire and send a signal down

its axon. A negative weight will tend to inhibit the firing of the neuron while a positive

weight will tend to excite the firing of the neuron. The output of a neuron is modeled by

the following formula:

o = f(W,X) = (1 + e-(WX)) -t

(1)

The output is given by the dot product W. X where X is the vector of the inputs (xo, x 1,

... Xn)'l and W is the vector of the weights (w 0, w 1, ... Wn)'l. W is known as the weight

vector, x0 is always equal to 1 and is known as the bias. The dot product is applied to an
activation function. The activation function is a threshold function. For the activation

function, we use the sigmoidal function given by the equation:

f(x) = (1 + e-*)-'

(2)

The neurons can be connoted in various architectures. In this paper, we are concerned
with feed-forward and cascade-correlation neural networks. In a layered feed-forward

network, the neurons are arranged in multiple layers consisting of" _':_;'_nu_ layer, one or

more middle layers, and the output layer. The input neurons ar_ ,.,_.._cted to the outside

world and transmit unweighted inputs to the middle layers. The neurons in each

consecutive layer are connected via synapses to neurons in the previous layer. The
cascade-correlation architecture is like the feedforward network except that it has only
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one neuron in each middle layer and each neuron is connected to all the neurons in the

previous layers.

Neural networks are trained by example. To train a neural network for solving a

certain problem, the training data is arranged in vectors consisting of the input data to be

applied to the network along with its desired or targeted outputs that the network will

produce when the training is completed. The initial weights in the network are usually set

up randomly. The input data is applied to the neural network and the data is propagated

through the network via the synapses and the firing of the neurons. The outputs of the

neural network are then compared with the target outputs and the weights of the neural

network are then adjusted using any of a number of learning algorithms so that the next

propagation of inputs will produce the target outputs. We will now examine the concept

of genetic algorithms and how they can be applied to training the cascade-correlation
neural network.

Genetic Algorithms

Genetic algorithms are based on Darwin's concepts of the survival of the fittest and

evolution as applied to problems of optimization and classification [1]. They work with a

population of proposed solutions to a problem. Darwin's theory states that animals that

are fittest to their environment have better chances of surviving. Analogously, we assign

each member of the population a fitness based on how well they come to solving the

problem. The better they are at solving the problem, the higher the fitness they are

assigned. For the genetic algorithm to work, the members of the population should be

encoded in an alphabet which is a set of characters representing the various characteristics

of the solution. The principle of minimal alphabets states that we should select the

smallest alphabet that allows the natural expression of the problem. Since the weights can

be represented as real numbers, the alphabet {0,1 } which allows for the maximum number

of schema per bit is chosen.

The simple genetic algorithm consists of three operators: reproduction, crossover, and

mutation. Referring to Darwin, the animals in the wild that are allowed to mate are those

who are the strongest or fittest. This ensures that their offspring, and therefore the

population of that animal, will be fit and will survive. We apply this principle to a

population of neural networks. The members of the population are assigned probabilities

to become parents based on their fitness. The roulette wheel method assigns the

probability of becoming a parent as:

P parent _

_ tne ss _o,_t

(3)
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Two parents are chosen and two offspring or children are produced using the two

remaining operators: crossover and mutation.

Parents are represented by strings of l's and O's. Various mappings of the parameters

of the problem to the alphabet {0,1} can be used depending on the desired range of the

parameters. In the following example, let us assume there is one integer parameter. The

two parents are encoded in binary. A crossover point is randomly chosen. All the bits

before the crossover point are switched between the two parents. The result is two new

patterns of bits which are called the children. The process can be illustrated as follows:

crossover point = 5:

Parents: Offspring:

001011000 001111000

00111[100 001011100

The reason behind crossover and binary encoding warrants some explanation. The

genetic algorithm optimizes by manipulating bit patterns known as schema. Examples of
schemas are as follows:

***10" 000001 10110" *****0 11"111 1"*I**

where a " * " indicates a "don't care." The genetic algorithm searches for an optimal

solution by combining various schemas. Schema with shorter defining len_hs, or the

length between defined bit positions, have a better chance of surviving during the

crossover operation. The third operator, mutation, consists of the switching of a bit with

a certain probability Pmutation. This serves the same purpose as the biological mutation.

The mutation may allow members of the population to adapt to the problem better

therefore increasing their fitness and likelihood of survival. It also serves the purpose of

reintroducing schema that may be crucial in the optimization but may have been eliminated

in earlier generations.

The weights of the neural network are binary encoded and then :,oncatenated together

to form a binary string for each network. Parents are randomly selected in proportion to

their fitness and new children are created using crossover and mutation. A non-

overlapping population is used in which a new population is generated for each

generation.
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GENETIC GI_,DIENT CASCADE-CORRELATION

The genetic gradient cascade-correlation (GGrCC) is a modification of the cascade-

correlation learning architecture. To understand it, one must understand cascade-

correlation. A short presentation of the cascade-correlation learning architecture follows.

The GC_C algorithm is then presented.

Cascade-Correlation Learning Architecture

The cascade-correlation architecture has ari architecture that lends itself well to the use

of genetic algorithms due to its asymmetric architecture. Each weight has a specific

function and is not interchangeable. The cascade-correlation also has a self-determining

architecture in which neurons are added as they are needed [8].
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Figure 4. Initial cascade-correlation architecture.

In the cascade-correlation learning architecture, the neural network starts as a simple

feedforward network with a layer of output neurons as shown in Figure 4 [8]. These

output neurons are directly connected to the inputs to the network. The cascade-

correlation learning algorithm is shown below.
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Cascade-Correlation Algorithm.

(Ala) Set up initial cascade-correlation architecture, Then at step j : j =

0,1,...;

(Alb)

(Alc)

(Ald)

(Ale)

(All)

(Alg)

(Alh)

(Ali)

Randomize output neuron weights.

Compute gradient of output weights using (6).

Adjust output weights using Quickprop (8).

Create hidden neuron j and randomize weights.

Compute gradients of hidden neuron j using (10)

Adjust hidden neuron j weights using Quickprop (11)

Connect hidden unit j to network.

If acceptable error or maximum number of hidden nodes, stop;

otherwise return to (Alb).

The output weights are randomized in the range of-0.5 to 0.5. A set of training inputs

is applied to the network and the SSE error in the network is calculated using the

following equation'.

where:

sse =Z Z (eZ
i # I

E v = p _ o v
n_ Yn r n_

(4)

(5)

E v is the residual error for training vector p and output neuron ni, ),_ is the desired
n_

output of neuron ni for training vector p and o p is the present output of neuron n i fornt

training vector p. The output weights are then adjusted to minimize the SSE. This is

done by first calculating the gradient of the error with respect to the weights by:

C_ p
n_ p t p- - ,TE,y;I ,

_ n I ,,123

(6)

where:

i

jv :
(7)

w is the weight from neuron n i to xj which is either an input to the network or thenj ,_.'j

output from a hidden neuron to be added later, r/ is the learning constant, f_ is the

derivative of the activation function, and I v is the inp',_ _!_ :,atput neuron n i from xj.x1

We then use a number of Quickprop iterations to update the weight. Quickprop is a fo_rn
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of the numerical analysis technique &Newton's method. Quickprop is represented by the

following equation:

VEt(t)
/X_,+ (0 = VEg(t - 1)- VEg(t) Aw,+ (t- 1)

(8)

where w,_.xj is the change in the weight and t is the iteration number.

A hidden neuron is now created and its weights randomized in the range of-0.5 to 0.5.

The correlation of the hidden neuron's output to the error in the neural network is

calculated using the following equation:

)

where o_ is the average output of the hidden neuron and E., is the average error.

The gradient of the correlation with respect to the hidden node weights is given by:

(9)

- as, _Z Z (<- E,):;z;
_'8,xj p ,

(10)

where o-_ is the sign of correlation between o p and o p Quickprop is then used to update

the hidden node weights to maximize the correlation. The hidden nodes are updated by:

vS,, (t)
Aw_,xj (t) = VS_ (t - 1) - VS_ (t) Aw_'x' (t - 1)

(11)

The output neurons are then connected to the new hidden node as shown in Figure 5

and the output weights are once again readjusted to minimize the SSE in the network.

This process of optimizing the output weights, creating a hidden neuron, optimizing the

hidden neuron weights, connecting it to the output neurons, and adjusting the output

neuron weights is repeated until an acceptably small error is produced or a maximum

number of nodes is reached. As hidden neurons are added to the network, they are linked

to any previously installed hidden neurons in addition to the inputs to the network. This is

demonstrated in Figure 6.
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Figure 5. Cascade-correlation architecture with one hidden unit.
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Cascade-Correlation architecture with two hidden units.

Genetic Gradient Cascade-Correlation Learning Architecture

In the genetic gradient cascade-correlation algorithm (GGrCC), the genetic algorithm

is used to find the weights instead of using Quickprop. However, when genetic algorithms

are used in conjunction with the cascade-correlation learning architecture, there is the

problem of the genetic algorithm not convergi_tg to the optimum set of weights for the

neural network. After adding new hidden units, the genetic algorithm could not train the
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output weights to improve the performance of the neural network. In an attempt to

overcome this problem, the genetic algorithm is first allowed to operate on the weights for

a fixed number of generations. The gradients of the errors are used to focus on the range

of interest and the genetic algorithm is used on this smaller range.

The genetic gradient algorithm is shown below:

Genetic Gradient Cascade-Correlation Algorithm.

• (A2a)

(A2b)

(A2c)

(A2d)

(A2e)

(A2f)

(A2g)

(A2h)

(A2i)

•(A2j)

Set up initial cascade-correlation architecture, Then at step j : j =

0,1,...;

Perform genetic search of output neuron weight space using

equation (12) for chromosome fitnesses. If search yields no or little

improvement, go to (A2e).

Compute gradient of output weights using (6).

Adjust output weight to chromosome coding using (13) and go to

(A2b).

Create hidden neuron j.

Perform genetic search of weight space of hidden neuron j using

equation (9) for chromosome fitnesses. If search yields little or no

improvement, go to (A2i).

Compute gradients of hidden neuron j using (1%

Adjust hidden neuron j weight to chromosome coding using (13)

and go to (A2f).

Connect hidden unit j to network.

If error is acceptable or maximum number of hidden nodes, stop;

otherwise return to (A2b).

The output layer weights are encoded as binary strings and concatenated to form the

chromosome to be used by the genetic algorithm. The chromosomes each represent a

different set of weights. We chose to use output layer weights randomized in the range of

-10 to 10 and we assign the fitness of each chromosome by:

fitness(i) = 4 × p x o - SSE ,

(12)

where p is the number of training vectors, o is the number of outputs, and/ i'E is the sum

&the squares of error present in the network where the SSE is given by eqm,.tion (4). The

genetic algorithm utilized the non-overlapping population model.

We further optimized the weights by u_;,:._: i_:formation from the gradient in the weight

space of the best chromosome to choose a new range for each weight. In general, we

allow the population ten generations for convergence. The error gradient for the output
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layer weights is calculated from equation (6). We calculate the new range for each weight

by:

[(Wo,+ C. r_n( _p%,))...(%, + C. max( zXpWo,))]

(13)

where C is a constant. We adjusted the range of the weights twice. First, we used the

value of C=1000 and adjusted the weight range. We then used the genetic algorithm for

ten generations and then readjusted the weight range using C=100 followed by ten more

generations of the genetic algorithm. In this way, we are using the gradient to focus the

genetic algorithm's search on around the area of convergence instead of wasting time

searching the remaining weight space. This greatly improves the optimization of the

output weights.

The weights in the hidden neurons are initially randomized in the range of-20 to 20.

The correlation given in equation (9) is used as the fitness for the candidate neurons. We

allow the population twenty generations for convergence and adjust the range of the

hidden nodes weights and using the genetic algorithm again using equation (13) with

C=1000 and C=100 and the gradient in equation (10). The output weights are then

readjusted, another hidden node created, and the process continues as outlined in the

algorithm.

RESULTS

The neural networks are set up and trained to recognize different aspects of the data.

The goal is to predict a certain parameter of a specimen when the preprocessed AU signal

is applied to the inputs of a neural network. The parameters that are of interest to us are

the elastic modulus and the strain that a specimen may have been subjected to.

Due to a limited number of specimens available, the specimens are rotated between

training and testing in the following way: one specimen is set aside for testing and the rest

are used for training the neural network. Then the next specimen is set aside and the

remainder is used for training. This is repeated for all specimens in the data set.

Prediction of Elastic Modulus for [0]8 and [+-30]2 S Laminates

A specimen's elastic modulus, E, may be calculated from tt_e initial gradient of its

experimentally obtained stress-strain curve [3]. We attempt here to predict a specimen's

eJastic modulus directly from its AU measurements. Tables l a and l b show the values for

E predicted for five specimer_-_ of type E[018 using GGrCC and backpropagatic_n

respectively. Tables 2a and 2b si_c,_v the values of E predicted fo_ six [+-3012 S specimc__=,

again using GGrCC and backpropagation.
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The genetic gradient cascade-correlation network starts off with 32 inputs and one

output node. Seven hidden nodes are added to each network during training as shown in

Figure, 7.

Specimen
Number

2

4

Actual E

(GPa)

192

193

183

I79

Tapered

Specimen
Predicted E

(GPa)

178.9

179.5

177.9

193.6

Error (GPa)

13.1

13.5

5.1

14.6

Non-tapered

Specimen
Predicted E

(GPa)
188.0

193.4

194.5

195.5

Error (GPa)

4.0

0.4

11.5

1.9

5 197 193.5 3.5 187.4 9.6

Average 8.3 4.6

Error (GPa)

Table la. Estimation of E for [0]8 using genetic gradient cascade-correlation

Specimen

Number

Actual E

(GPa)

Tapered

Specimen
Predicted E

(GPa)
206.8

Error (GPa)

Non-tapered

Specimen
Predicted E

(GPa)
191.5

Error (GPa)

192.5

1 192 14.8 0.4

2 193 184.5 8.5 188.1 4.9

3 183 188.0 5.0 189.7 6.7

4 179 188.5 9.5 13.5

5 197 188.7 8.3 186.6 10.4

Average 9.2 7.2

Error (GPa)

Table lb. Estimation of E for [0]8 using back propagation
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Specimen
Number

ActualE
(GPa)

Tapered
Specimen

PredictedE
(GPa)
151.1

Error (GPa)

Non-tapered
specimen

PredictedE
(GPa)
144.0

Error (GPa)

1 150 1.1 6.0

2 150 151.1 1.1 142.8 7.3

3 149 145.7 3.3 142.0 7.0

4 142 141.7 0.3 144.8 2.8

5 141 143.9 2.9 148.6 7.6

6 148 I41.3 6.7 142.4 5.6

Average 2.6 6.1

Error (GPa)

Table 2a. Estimation of E for [+-3012 s using genetic gradient cascade-correlation

Specimen

Number

Actual E

(GPa) .

Tapered

Specimen
Predicted E

(GPa)
151.6

Error (GPa)

Non-tapered

specimen
Predicted E

(GPa)

Error (GPa)

1 150 1.6 148.9 1.1

2 150 149.3 0.7 148.0 2.0

3 149 147.9 1.1 144.8 4.2

4 142 144.8 2.8 147.0 5.0

5 141 144.9 3.9 147.7 6.7

6 148 144.0 4.0 144.1 3.9

Average 2.4 3.8

Error (GPa)

Table 2b. Estimation of E for [+-3012 S using back propagation
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Figure 7. The GGrCC architecture for the AU data.

CONCLUSIONS

The results of this study indicate that a genetically trained neural network using

acousto-ultrasonic data can predict the elastic modulus for [0]8 and [+-3012 S specimens

with a maximum error less or equal to 14.6 GPa, and the average error less or equal to 8.3

GPa. The results show that it is possible to predict certain mechanical parameters of a

specimen from the fast Fourier transform of its AU waveform without any additional

signal processing. Experiments with much larger data sets should be run for a more

comprehensive analysis.
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